Sparse Tables: Implementing sparse tables for efficient range queries.

Sparse Tables are a powerful data structure for answering range queries efficiently, especially for static array data. They are particularly useful for answering range minimum/maximum queries in logarithmic time after linearithmic preprocessing time. Here's how you can implement a Sparse Table for range minimum queries (RMQ) in Go:

Sparse Table Implementation

  1. Preprocessing: Precompute the minimum values for all intervals with sizes that are powers of two.
  2. Querying: Use the precomputed values to answer queries in constant time.

Here's a complete implementation in Go:

go
package main import ( "fmt" ) // SparseTable structure for Range Minimum Query (RMQ) type SparseTable struct { data [][]int log []int n int } // NewSparseTable initializes the Sparse Table for a given array func NewSparseTable(arr []int) *SparseTable { n := len(arr) log := make([]int, n+1) log[1] = 0 for i := 2; i <= n; i++ { log[i] = log[i/2] + 1 } k := log[n] + 1 // Initialize Sparse Table data := make([][]int, n) for i := range data { data[i] = make([]int, k) data[i][0] = arr[i] } // Precompute values for intervals of size 2^j for j := 1; j < k; j++ { for i := 0; i+(1<<j)-1 < n; i++ { data[i][j] = min(data[i][j-1], data[i+(1<<(j-1))][j-1]) } } return &SparseTable{data: data, log: log, n: n} } // Query returns the minimum value in the range [L, R] func (st *SparseTable) Query(L, R int) int { j := st.log[R-L+1] return min(st.data[L][j], st.data[R-(1<<j)+1][j]) } // Helper function to get minimum of two integers func min(a, b int) int { if a < b { return a } return b } func main() { arr := []int{1, 3, -1, 7, 8, 3, 2, 6} st := NewSparseTable(arr) fmt.Println("Range Minimum Query Results:") fmt.Printf("Minimum of range [0, 3]: %d\n", st.Query(0, 3)) fmt.Printf("Minimum of range [1, 5]: %d\n", st.Query(1, 5)) fmt.Printf("Minimum of range [2, 6]: %d\n", st.Query(2, 6)) fmt.Printf("Minimum of range [4, 7]: %d\n", st.Query(4, 7)) }

Explanation

  1. Preprocessing:

    • We first compute the logarithm values which help in determining the largest power of 2 that fits within any given range.
    • We initialize a 2D slice data where data[i][j] represents the minimum value in the interval [i, i + 2^j - 1].
    • We fill in the first column of the table with the array values since intervals of size 2^0 are just the individual elements.
    • For each subsequent column j, we fill in the values using the precomputed values from the previous column.
  2. Querying:

    • To answer a query for the minimum value in the range [L, R], we use the largest power of 2 that fits within this range.
    • The result is the minimum of the two precomputed intervals that cover the query range.

This implementation ensures that preprocessing the array takes O(nlogn)O(n \log n) time, and each query can be answered in O(1)O(1) time. This efficiency makes Sparse Tables an excellent choice for static range query problems.

Becoming a Senior Go Developer: Mastering Go and Its Ecosystem